式中L--风量 m3/h;v--风速m/s;F--风管面积m2。
风管静压选择的确定:
1.空调通风管道阻力计算步骤
风管系统的计算总阻力包括:沿程损失和局部阻力(摩擦阻力和局部阻力)。一般在通风系统中用的最多的是等压损法和假定速度法,现以假定速度法为例说明。
计算前应先绘制出风管系统的轴侧图,然后进行分段编号,表出风管尺寸、风 管长度和风量。(注意:计算阻力时必须选择压力损失最大的管路计算,通常选 择管路长度最长的管路。)
具体计算方法如下:
1) 假定各管段的风速;
2) 计算出该段的管道截面尺寸;
3) 选出标准风管尺寸;
4) 重新按标准风管尺寸,计算出管内的实际流速;
5) 进行各管段的阻力计算; 具体的计算公式如下:
1.直管路的压力损失(沿程阻力)(pa)=L×△P
L:直管长度(m)
△P:单位摩擦损失(pa/m)
2.弯头、分支、手动阀门等部位的压力损失(摩擦阻力)(pa)=个数×△Pt
△Pt=ζ×(V2/2g)×γ
△Pt:局部压力损失(pa/个) ζ:局部阻力系数; V:风管内风速(m/s) g:重力加速度 9.8m/s2,γ:比重 1.2kg/m3;
3.直管及弯头、分支、阀门类等(总管路)的压力损失 H(pa)
H=K1×(L×△P+个数×△Pt)
K1为风管材料的修正系数
2.空调通风管道阻力概算
对于一般通风空调系统,风管压力损失值H(pa)可按下式估算:
H=△P×L(1+K)
式中:△P=1.0-2.0pa/m。当矩形风管的长宽比(长边/短边)≤4.0,通常取为 1.0~1.5pa/m。
L:到最运送风口的送风管总长度加上到最运回风口的回风管的总长度,m; K:局部压力损失与摩擦压力损失的比值。
弯头三通少式,取K=1.0~2.0; 弯头三通多的场合,可取到K=3.0~5.0。
3.风管静压选择的确定
根据计算出来的风管总管段的压力损失值,同格力电器提供的设计选型样本进行比对,确定需要机组的机外静压。
如静压相差太大,最好提前进行咨询厂家。
静压选择不当问题的处理:
1.静压过大问题的处理
1) 机组所带静压较大,而风管设计长度较短;
2) 机组所带静压较大,设计长度没问题,但是安装时却省略了风管,或是风 管长度缩短。
以上问题分析:风管阻力较小,无法克服机组静压,导致静压转化为动压, 随之带来的是机组出风口风速大、风量大(比正常机型大很多)、噪音大,表冷器飘水甚至风机电机过载。
出现如上问题时常见的工程整改措施,主要是通过加大风管阻力,达到克服 静压的目的。常见的工程整改措施如下:
1) 根据计算适当增加风管长度;
2) 增加风阀或改变阀门开度增加风管阻力;
3) 增加送风或回风静压箱;
4) 增加消声弯头等设备;
5) 适当增加风口的数量或风口的面积;
6) 增加效果更好的过滤网,例如将粗效的改为中效或高效; 此外,还可以从机组上进行更改,主要是通过更换部件一定程度上减少机组的静压,使静压与风管阻力相匹配,常见措施如下:对于皮带传动的大冷量、大风量的机组,如大风管机组、柜式风机盘管等。
可以采用更换皮带轮,改变电机与风机之间的传动比,降低风机转速,减少风量; 对于直联传动的较小冷量、风量的机组,如小风管机组、多联机风管式室内机组等。常见的一些措施:
1)更换电机,更换较低转速的电机;
2)改变电机的输入电压,从而改变电机转速,常见的为增加无级调速板; 注意:此二种方法只能是进行稍微调整,并且只能在一定范围之内调整,超出范围不但没有效果反而会带来一些新的问题,如:采用无级调速板调输入电压,但电压调的太小会引起电机本身的电磁噪音;甚至会影响机组的使用寿命。
以上整改措施,只能属于事后补救手段,若要真正避免此类问题,还需从设计选型、施工安装等源头严格控制才好。但相比机组更换部件来说,从工程上整改效果相对会更好,也会更彻底。
2.静压过小问题的处理
1) 机组所带静压为零静压或者比较小,而却连接风管或设计长度较长; 以上问题分析:风管阻力较大,机组没有静压或静压较小无法克服阻力,导致机组动压转化为静压,随之带来的是机组出风口风速小、风量小、风无法吹出来,风口结露滴水,使得空调效果较差,尤其是制热效果。
出现如上问题时常见的工程整改措施,主要是通过减小风管阻力,常见工程 整改措施如下:
1) 去掉风管改为侧送风;
2) 缩短风管长度减少阻力;
3) 将保温软管改为镀锌铁皮; 此外,还可以从机组上进行更改,主要是通过增大机组静压,使静压与风管阻力相匹配,措施如下:对于直联传动的较小冷量、风量的机组,如小风管机组、多联机风管式室内机组等。
常见的一些措施:更换电机,更换较大转速的电机;同样此种方法也是在一定范围内改进。
归根究底,对于风管静压选择不当造成的问题解决的最好办法:还是从设计选型、施工安装等源头从严监控,避免出现问题。